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Abstract

The'éhange in the projectiie charge and the dispersion in its

. value that arise in the cou?sé of a damped»nucleaf collision are
treated quantﬁm mechanically in terms of a collective mode analogous
to the Giant Dipole Resonahce in spherical nuclei. First a classical
trajectory calculatiqn is performed to determine the time evolution of
the neck which opens between the two nuclei dﬁring the reaction and a
simplified hydrqdynamic_model is used fo estimate the correéponding
values of the inertial and damping coefficients for the charge
aSymmétry degree of freedom. Then a démpgd time-dependent Schrodinger
equation is solved for the final values of the mean charge (Z) and its

dispersion FF and these predictions are compared with measured

WHM

values,
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1. Introduction

In quasi-elastic and deep-inelastic nuclear reactions charge

equilibration appears to occur quite rapidly. Even when the collision

@

involves relatively little energy ibss or net mass transfer the

charge-to-mass ratio of the projectile-like fragment is ébserved to ]
have shifted to an equilibfium value cloée to that of the composite
system. This rapid movement of protons in one direqtion.andvneutrons
in the other can be viewed as a collective mode associated with
isovector-type hydrodynamical flow in the dinucleus analogous to the
»Steinwedel—Jensenl) deééription of the Giant Diﬁole Resonance in
ordinéry nuclei. Since we find that the chara;teristic energy of such
a mode 1is typically much 1arger than fﬁe nuélear temperatures encount-
vered, the fluctuations in the chafge asymmetry degree of freedqm are
eXpected to come mainly from zero—point motion. Insofar as it is
appropriéte to associate such'a collective coordinate with the charge
on the projectile-like fragment, we expect that the width of the
measured charge distributioﬁ will be dominated by quantal (rather than
statistical) effects.

In chleaf fission the widths of’the change distributions observed
have been associated by Fong (see ref. 2y) with statistical
fluctuations due to the internél excitation of the nucleus. However,
Hill and Wheeler pointed out that in a hydrodynamical description
fluctuations ih the division of charge are to be expected from quantum v

mechanical zerc-point motion even when there is no excitation



energyB). Such a description of the charge asymmetry mode has already been

applied with some success by Swiatecki and Blann to charge and mass

. . . . . . 4 .
distributions seen in fission ), and more recently to heavy-ion

reactions by Morettos),_by Berlanger et a1.6);vand by Hofmann,,

Grégéire, Lucas and Ngo Howéver, as pointed out by Nifenecker

et a1.9), it is essential to consider the time dependence of the

shape of th%;system in order to corfe;ﬁly.estabiish the

connection between the GDR-1like collective motion and the width of the
charge distribution which is experimentally observed.

Roughly speaking, the inertié associated with the charge asymmetry
degree of freedom is inversely proportional to the size of the neck
connecting the two colliding nuclei. Conseduently, the charge dis~-
persion.associated with zero-point motion in this degree of freedom
would go to zero if the'pinch—off'of the neck during the final stage
of the collision were to take place adiabatically. In actual fact,
trajectory calculatiohslo) predict)that the éinch-off takes.place
sﬁfficiently rapidiy'tﬁat the width of the charge distribution is
"frozen in'" by the increasing inertia. 1In order to make a quantétive
estimate of these non—adiabétic effects we have undertaken to solve
the timé-dependent Scheringer equation for a simple dynamical model
of the charge asymmetry degree of fréedom.

In the next section we describe the geometrical, hydrodynamicgl

model that we haﬁe used té calculate the time dependence of the stiff-

- ness, inertia and damping for this GDR-like isovector mode during a

nuclear collision. In the third section we describe the time-

- dependent Schrodinger equation calculations that serve to comnect the



initial étate_of the system to the final charge distributions that are-
measured. In the fourth section thesé calculations aré comparéd with

experiment and in the final section we discuss the results and ' | ‘ -
consider briefly other approaches towards describing the same |

phenomena.
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.2. Description of the model

The mass asymmetry of the dinuélear complex can be specified by
the mass number A of the projectile-like binary partner; In order to
describe the division of charge between the two partners, for a given
mass asymmetry, we use the isospin component of the prdjectile—like

7nucleus T =-%(N—Z). The poﬁential—energy surface of the dinucleus
varies rather geﬁtly in the A—&irection while the strong symmetry
energy makes it much steeper in the T-direction. Furthermore, the
dynémical evolution along the mass asymmetry proceeds relatively
slowly and can often be entirely neglected. It is therefore Sensible
to discuss the dynamics of the charge asymmetry coordinate T for a

fixed value of the mass asymmetry.

2.1 Dynamics of the dinucleus

In describing the overall dynamics of the dinucleus we adopt the

médel developed in refs..lo’ll)

, for which a brief summary is given
below.

The dinuclear complex is depicfed as illustrated in fig. 1: two
spherical nuclei of mass numbers A and B joined by a small cylindrical
neck. The mass and charge.nuﬁbers A and Z refer to the |

projectile-like partner. The equivalent sharp radius is given by the

following fit to the Droplet Model predictionlz),

1/3

R, = 1.28 A 1/3 - (1)

A - 0.76 + O'S_A

The corresponding central radius which locates the nuclear surface

profile is related to RA by



C =

AT Ry -? /RA_ ' g (2)

where b = 1 fm is the nuglear surface diffusenessl3).

The smallest distance between the two spherical nuclei is then

given by
s=R-C, -C R ' o (3)
where R is the separation between the two nuclear centers. Further-

more, the radius of the neck is denoted by c and its 1ength d is taken

from the approximate expression

d ~s + = s ' : : (4)
2

where the ''reduced' radius R is given by

c,C

R = — A+BC (5)
A B

The potential energy of the dindcleus has the form

V=V, +V_ +V_ +V , : (6)

where VA and VB denote the energies of the two individual spher-

ical nuclei having mass numbers A and B, as given by the Lysekil mass

formulala). Furthermore, V., is the electrical potential between the

C



spheres; it is approximated by the Coulomb potential when the two

spheres do not intersect (s > 0) and by a linear potential otherwise

(s < 0). The remaining energy V,_  1is associated with the inter-

AB

. . . . .15 ' C s .
action zone. Following a suggestion by Swiatecki ,), as modified in
11 '

ref.  )»> we use
- (4 ¥c2/2ﬁb
VAB = Zﬂc(deff-C) + 4Tbe®<B->e (7)
Here deff =d - Scrit(l —'c/2§) is an effective neck length which

takes account of the nuclear surface diffuseness 15); we use

s = -®(0) = 1.78 fm. The first term ie the above expression is

crit

the surface energy associated with the cylindrical neck. The elec-
trical energy is neglected. The second term represents the additional
proximity energy arising from the nuclear interactions of the two
surfaces facing each‘other (see Blocki et al.,lZ); the exponential
factor represents a rough attempt to reduce this contribution when the
two surfaces form an angle with one another.

The dinuclear moﬁion is subject to the friction generated by the
oee—body dissipation mechanisn}6). . The transfer of pucleons between
fhe two nuclides produces a friction force acting on the relative
motion of the two spheres. Their inertias are calculeted under the
assumption of rigid spheres. Furthermore, the motion of the neck

radius ¢ is counteracted by the wall dissipation in the cylinder,

. o P N
FdlSS -1 §7(pv2ncd 02’e d/(b+c)
c 2 3¢

) : (8)



The exponential factor is included so as to diminish the dissipation
-for a long nafrowvneck, as 1s suggested by the general theory of
one-body dissipation17). The balancing of this dissipative force
with the conservative force implied by the potentiai energy ‘described
abbve detgrmines‘the‘instantaneous fate of change in the neck radius.

Apart from the moderaté arbitrariness with respect to the detail;
of the neck Aynamiﬁs, the model contains no adjustable elements. 1t
has‘been shown to give a reasonable reproduction of the average trends
in the experimental data on damped collisionsll),and we believe that
it provides the preéently'best available estimation of the temporal
'evolution of the neck.

At the present stage of development of our approach to describing
charge equilibration we have used the results of the trajectory cal-
culation as input to the calculation of the dynamical evolﬁtion of the
charge asymmetry. The next logical step in this program would be to
vconsider the éoupliné of the charge asymmetry to the other dyﬁamical
variables by simultaneous solution of the corresponding coupled equations of
motion. For target and projecﬁile systems with la;ge differencés in
Z/A, such coupling may give rise to the prediction of observable
changes in energy and angular distributions caused by the initial
surge of particles through the .neck as it opens up.

Typical results obtained from the trajectory calculations
described above are shown in fig. 2a. The time evolution of the neck

radius ¢ and the neck length d is plotted for the case of 430 MeV



o

86 72 . .
Kr on = Mo, at an impact parameter corresponding to an angular

momentum of 60h. Rather than the cylinder radius c, the figure

displays a slightly larger effective neck radius defined by

2= qu)(%)e-cz/ﬁ{b | o o)
This quantity is considered bécause_of the possibility of some

exchange bétween the two nuclei before the neck is established or
between the two juxtaposed surfaces outside the neckls). Because of
this.proximity éontribution,vthe displayed neck radius does not rise
vertically when‘ﬁhe two nuclgi come within the critical separéfion
where the neck is established. No similar rounding off of the curve

can be seen at the end of the collision because the nuclei are further

apart when the cylinder radius drops to zero and the proximity contri-

bution is negligible. The general appearance of ceff(t) is a rapid

- growth in the early éart of the collision, mostly reflecting the

forced geometrical overlap of the two spheres, followed by a gently
sloping plateau as the two nuclei move apart again, finally to be
terminated by a rather sudden collapse.

The corresponding behavior of the neck length d is an initial

- rather constant value of d ® s . associated with the frozen

crit

geometrical overlap of the two nuclei. As the nuclei move apart the
neck length grows until the collapse occurs. Before contact and after
pinch-off the value of the neck length shown in the figure (equal to

the surface separation s) has no physical significance.
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Under tﬁe figure the'five small drawings show the appearance_&f
the dinucleus at various stages of tﬁe cqllision.

In this figure, and throughout, the time is measured in units of
10—22 sec which is a convenient unit for nuclear physics problems;
follbwing the suggestion by Alonsolg) we denote this time unit as o

dsec.

2.2 The charge asymmetry mode

Once the time evolution of the dinuclear geometry has been
vdeterﬁined from the trajectory calculation, tﬁe dynamical coefficients
for the charge asymmetry mode can be calculated. For the stiffness a
conventional'nuélear mass formula is usgd, and for the inertia and

damping a rather simplified hydrodynamical model is employed.

2.2a The driving potential
The potential energy, considered as a function of the charge

asymmetry coordinate T, is of the harmonic form

V(T) = constant +-%K(T—TO) v | | o (10)

For'two.nuclei with mass numbers A and B the stiffness K and the

equilibrium value TO are given by

_ 1 1} . 1 1 -
K SKal[A M-S LU vy Sy v £ | .
A B _
: 2 21
1 1 2e &
+ 2¢ + - , (11)
31,173~ 5173 R

and
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SRR VY S0 S U W PO e S
o 2 2\, 173 " I3 B Ry i)
2c, ' o2 :
+ ;T7§~_ T .(ZA + ZB) /K . (12)

when using the same macroscopic mass formula as employed in the

. e 14
trajectory calculations ). (The use of a more modern mass expres-
sion such as the Droplet Model leads to about the same résultzo).

The various coefficients are,

a; = 1574941 MeV,

a, =.17.9439 MeV, -

K = 1.7826, | - a»
cy = 0.7053 MeV,.

e2 = 1.44 MeV fm.

We wish to point out that the equilibrium value of T, does not
correspopd to having the same charge-to-mass ratio in the two nuclei.
Generally the total energy is minimized when the charge-to-mass ratio
is larger in the smaller of the two nuclei, This is true when the two
nuclei are well separated, and remains true to some extent when they
are in contact.

The stiffness coefficient K depends on the separation R but this
dependence'is father weak in the interesting range of-séparations.

The oscillator has therefore a nearly constant stiffness as a function

of time.
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2.2b The inertia

In the present investigation, where we consider the charge
asymmetry to be an elementary collective mode in the dinucleus, the
kinetic energy can be written

1 -2

Epin = 2 M . )

N

: wherg M is the inertial mass parameter associated with T. fo estimate
" this quantity we consider the hydrédynamical flow of the proton and
neutron fluids through the neck.

The inertial mass corresponding to uniform flow through a

cylindrical neck is given approximately by'

- 4m*d

2
meTo,

1
eyl (15)
Here p, = 0.145 fm“3 is the standard nuclear density. For the
effective mass we use the value m* = 0.7m, which studies of the Giant
Dipole Resonance. have shown to be appropriate for describing the

21,22y e

inertial properties of isovector flows in nuclei
additional contribution to the inertia from the flow field within the
nuclei at each end of the ﬁeck 1s roughly approximated by assuming
that the neck flow extends into the nuclei at each end by a distance
eQual to the neck radius, so that the effective length of the neck
becomes (d + 2c). Alternatively, we might have used the inertia
associated with non-viscous flow through a circular hole in a thin

23,24,
)

wall in nuclear matter that is given by
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Mo =22 o - (16)
“bulk co ? : .
4 0
and to lowest order in (c/R) this value can be taken for the inertia

associated with the flow inside the two nuclei at each end of the

éyiindrical neck. -(In the aﬁove two expressions we have éet té unity
the factor A2/4NZ which arises from the factvthat the density of
protons is somewhat smaller than the density of neutrons so that the
proton fluid must move faster than the neutron fluid. This is

accurate to within a few percent.)

In the actual calculations we wishvtq use a hydrodynamic viscocity
to estimate the damping of the charge aéymmetry modg.l For the
cylinder the viscdus flow profile is parabolic rather than constant,
giving rise to an inertia which is increased by 4/3 over the-
irrétational vaiue.. Even though this is an almost meaningless
refinement considering how crudely we have'approximated‘ﬁhe flow
fields within the dinu;lear complex; we shall assume that the same

scale factor applies and the final expression used for the inertia is
]

then
o _ & 4
Mog g dr2e) a”n
meTp

2.2¢ The damping

Thé damping of>the cﬁarge asymmetry mode has been estimated by
using the same value of the hydrodynamical viscosity that is required
to reproduce the observed width of the Giant Dipole Resonance in
spherical nuclei. Thg procedure serves merely to appfoximately fix

the magnitude of the damping.
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Thus, for viscous flow through a cylinder the kinetic energy per
unit length is

2 6 2 ‘
Ein = (npop c )/(96n"d) s . . (18)

where p is the pressure difference and n is the viscosity

X . . .23 ’ . .
coefficient ). The rate of energy loss per unit length is

E = —(np2c4)/(8nq) . | (19)

Consequently, the friction coefficient y entering in the equation of

motion for the charge asymmetry is given by

= 6\)/c2 o ,(20)

where v = n/po is the kinematic viscosity. In order to reproduce
the width of the Giant Dipole Resonance in spherical nuclei this

quantity should have the value25)

n=1.35 fm? dsec ! . , (21)

The friction coefficient is then taken to be

N

Yy = (8.10/c2) dsec_1 v (22)
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Once the quantities K, M and Y have been expressed in terms of the
geometrical properties of the system (¢, d and R) their time-
dependence can be estimated in a number of ways. We have chosen to

use the classical trajectory calculations described above because they

"were readily available and were known to give a reasonable description

of other aspects of the collision process.

In part (b) of fig. 2 the reciprocai of our simplified
hydrodynamical estimate for the value of the mass parameter M, from
eq. (17), is plotted against time for three different impact para-
meters. For the most grazing collision shown here, corresponding an
orbital angular momentum of 108h, the period of oscillation in the
charge degree of freedom is never less than 12 dsec and the motion is
heavily damped. Consequently, the.charge equilibration (which is
discussed in greater detail in connection with fig; 3) is barely'aﬁle
to take place. For the more.cenpral collisions, for which the period
is smaller ahd the damping.less, complete equilibration takes place
be%ore thé neck pinches off. For these 1ongeg lasting collisions
where the period of the oscillations is about 8 dsec the gradual
increase in the mass parametér M (gradual decrease of 1/M in the’

figure) takes place almost adiabatically. Consequently, we. find in

‘the quantal calculations described in the next section, that the zero

. point width in this degree of freedom decreases smoothly with time

until it is frozen in by the abrupt increase in mass M and damping Y

at the end of the collision.



16

‘3. Quantal treatment of a time-dependent damped oscillator

The modél presented in the preceding chapter describes a particle
with time-dependent mass M(t), from eq. (17), placed in a harmonic
oscillator field with stiffness K(t), fromveq. (11), and.centered at
the positionkxoﬁt). Thevcorrespondiﬁg (undamped) Hamiltonian can 'Y

then be written as

H(e) = ml‘a P+ 2 K(E) (x - x (eN? ' (23)

From the dynamical trajectory calculations discusséd.in Section 2, we
can extréct a typical freqﬁency Q = /K/M for this harmonic oscilla-
tor. This value, along with the corresponding typical values of the
inertia M, stiffness K, phonon energy hQ) and friction parameter y, are

~displayed in table 1 for both dinuclear systems 86Kr + 92Mo and

132Xe + 197

Au. These quantities have beén selected at the ﬁoint
of maximum neck opening along the head-on trajectories. We recognize
that in both éases the phonon eneréy is sybstantially larger than the
<&
expected temperature.T rgached in ordinary damped nuclear collisions.
There fore one needs to treat the mode quantally rather than class-
ically. Since ordinarily hQ is several times larger than T we shall
in fact assume that the thermal fluctuations arising from the coupling
~of the oscillator to the rest of the system are neglible; it then
suffices to follow the evolution of only a single wave function
throughout the equilibration process.

As discussed in the preceding section, the charge asymmetry mode

is expected to be damped. It is therefore necessary to make room for
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dissipation in the quantal treatment of the mode. Dissipation in

quantum mechanics constitutes a non-trivial problem which has received
L . ' . 26.

much attention for several decades (see e.g., ref. ) for a

survey). Recently, a discussion has been given of the motion of a

Gaussian wave packet in a general time-dependent harmonic field,: in

21 : , .
the presence of a loss mechanism ). Following this work we shall
adopt the frictional Schrodinger equation of Kostim ) and Kan and

, 29
Griffin ).

b= +w oy - | (24)

in our present investigation. The non-linear frictional term can be

written
W= hy(e)(s - &) (25)

where y(t) is the time-dependent friction coefficient of the

. = . . i8
oscillator and S is the phase of the wave function, y = |w|e ; the
average of S is with respect to the instantaneous wave function y(t).

It has been shown that. the following Gaussian wave function is a

solution of the above frictional Schrodinger equation26):«

| VS | 2.
v(x,t) = (m)‘”‘*(l + -1-.-> cexp (-2 X v L - b s o] (26
20, h :
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Here o(t) and o*(t) are the complex dispersion and its conjugate and

8(t) is a real phase. Moreover, X(t) = &) and P(t) = {(p) = (-ih %;).
For this wave function the explicit form of W is
W= oy(x - 0P + Ahyx - 02 (1 -L) (27)
. 4 a o
. 26 . v
The first moments are known ) to yield the correct Ehrenfest
limit
X = P/M ] ' (28a)
P =‘—K(x - xo) - yP » _ (28b)
The time evolution of ¢ and § is governed by
. 'hz 2 ih_o *
ioc="-—.-+Koc"'-i- —-;,;(oe-oc)" (29a)
m o
c n2 (1 1) -
g = i --> + L(X,P/M) ' ' (29b)
m \Q % - S
o
where L(X,X) is the classical Lagrangian.
We also need to study to evolution of the second moments
2 2 -1,-1 '
X=(x) - X = %(Re o 1) (30a)
2
i -
9 = ) =P = (Re ) | » » (30b)

]
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Q

Imo : (30c)
eq

N} =

o = (%(xp + px)) - XP =

’ . . . 26,27
The equationsof motion for these quantities are )

X = 20/M (31a)
b= -2k - 240 + %Y- - , o (31b)
(.)’ = -KX"" /M - Yg | . : © (31¢)

: i . 2 2 ) ' .
We note that the relation X¢- o =h /4 remains true at all times.

It is an important feature of the adopted description that when
the quantities M, K, X0 and vy depend slowly on time an arbitrary
gaussian wave function will evolve towards the time-dependent ground
state of the oscillator, i.e., towards that gaussian which is.char—
acterized by the instaﬁtaneous values of M, K; and Xo. In‘
particular, when there is no time dependence of M, K; and XO the

gaussian decéys ﬁowards the ground state. This property of eq. (24)

' is distinct from other frictional Schriddinger equations proposed in

the literature.
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The above dynamical equations for the second moments are identical
to those provided by the quantal master equation derived from linear
response theory ° ’~ ) and by zero-temperature time-dependent per-
S -
turbation theory™ ). However, the present case is more general in

that it allows a time dependence of the various coefficients.

The diffusion coefficient for the energy change is given by .

" D(t) = W _ v (32)

and the rate of energy change, equal to the drift coefficient, is

E = g—t- (H)) = - (Y"‘ %)(P2+ q;)/M +D : | (33)

When the harmonic oscillator is time independent the‘groundfstate
dispersion is given by ng = h/(2MQ) and we obtain the zero-

temperature limit of the fluctuatibn-dissipation-theoren?l),
(34)

We wish to emphasize that (i)bthe present treatment does not rely
on a éertubatibﬁ—like approach and (2) it allows a non-adiabatic time
dependence of the dynamical coefficients to be introduced in a natural
way. Consequently, there is no need to discuss the characteristic

time scales of the collective mode and the loss mechanism.

AN
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4.v Calculated results

We have carried out dynamical calculations with the model
described ébove for caseé of expe:imenﬁal interest. Ihe‘general
featufes of the charge-asymmetry dynamicé are ili@strated in figs. 3
and 4.‘

In fig. 3 the time evolution of the mean projectile charge number
(Z) has been plotted fof a numﬁer of different anguiér momenta L. The

case considered is 430 MeV 80Kr on 92Md for which experimental

' . 6 .
data exist ). For large angular momenta (or impact parameters) the

neck betwgen the two nuclei remains rather constricted and the
corresponding inertia and damping coefficients are rather large.
Consequently the flow through the neck is inhibited and motion in the
charge-asymmetry degree of freedom is overdamped. The equilibrium
value of (Z) is then approached in a slow, monotonic fashion; for the
highest angular momenta this motion is tfuncated by the ﬁinch-off of
the neck befofe'the equilibrium value is reached. This overdamped
character of the mode gradually changes as the collisions become more
central. The nuclei then approach each other more closely and the
neck becomes wider. The correspondingAinertié and damping coeffi-

cients are in turn smaller and the flow may proceed more freely. An

- underdamped, oscillatory convergence toward the equilibrium value

results. For each impact parameter (and corrésponding angular
momentum) the value of (Z) is fixed when the neck between the

fragments closes. This point is indicated by a large dot on the
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curve. Extending these lines to larger times we have constructed
.(along the righthand side of the figure) a curve for the finél
observed value of (Z) as a function of angular momentum. The fra—
jectory calculations on thch these curves are based can be used to
establish a connection between angular momentum L and energy loss E¥%
so the different calculated values of (Z) can be compared with experi-
ment. Note tﬁat (Z)-overéhoots its equilibrium value during éome of
the small impact parameter collisions. Howe?er, fhis_motion is damped
out by the end of the reaction so that no overshoot appears in the
final value. Perhaps some combination of target, projectile and
bombarding energy can be found that would result in the prediction of
an observable overshoot. |
In fig. 4 we display the dynamical evolution of the full-width

at half-maximum Tewmy = 2-355 /X where x is defined by eq. (30a).
The change from overdamped to underdampedlmotion is also refleéted

in this figure; for high L-values a monotonous growfh of T occurs
while for low L-values an oscillatory behavior is apparent. The
frequency associated with the width oscillations is twice as large
‘as that of the average value, due to the harmonic character of the
mdtion. For the lower values of the angular momentum the charge
. asymmetry mode approaches its equilibrium distribution while there

is still good communication between the two biﬁary partners. From
“here on, as the neck grows longer during the outward radial motion,
the distribution ad justs adiabatically to the instantaneous.

equilibrium value. Since the inertia is growing during

-
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this phase, the cofreéponding equilibrium width is shrinking. Thi;'is
clearly seen in the figure. Prior to fhe final snapping, the ﬁotion
of the neck radius is accele;atedvandbthe correspondipg variation in
the inertia becomes so-rapid that the wave function can né longer
adjust adiabatically. During,this stage_the'chéracfer of the motion
changes from adiabatic to sudden and a "freeze;odt" occurs after which
the width remains constant. If it.were not for this the non-adiabatic
freeze-out the final width would have shrunk to éero as 'is appropriate
for a vanishing neck gadiué._ The actual value attainedvby the width
depends on.the.details éf the final stages of the neck dynamics.

The inclusion of the damping is an essential part of our dynamical
description of the chargé asymﬁetry;_ As it turans out, the value of the
friction coefficient Y determined.from the Giant Dipole Resonance
width produces smoéth cur?es for (Z) and T as a function of the energy
loss E*. The calculated results are rather stable with regpect to a
variation of v, but if it ié increased by more:than a factor of five

the evolution toward equilibrium would begin to be somewhat slower

~than is indicated by experiment. On the other hand, if Yy is reduced

by mofe than a factor of five ﬁhe calculated results for <Z>.and T
wouid begin to exhibit observable oscillations.as a function of‘E*.
An example of such overshoot behavior can be.seen in refé. 7’8) where
a time-independent damping coefficient has beeﬁ uged.

In fig. 5 the calculated results are compared with the

experimental data of ref. 6). The upper portion of the figure
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shows the mean éharge (Z) and the 1ower_portioﬁ shows the width I' of

the final éﬁarge distriﬁution at a fixed mass partition; both

quantities are plottedlas functions of the -total center;of-mass

kinetic energy loss E* which is approximately the same as the inducgd-

intrinsic excitation in the frégments! ‘: - | “
The primary experimental data are shown as the open dots on the

upper portion of the figure and‘the dashed curve results dafter

corgection<for heutron evaporation has been mader6). No error bars

are show in ref. 6) but the fact that.the resulting dashed cﬁrve

does. not gé through Z = 36 ét E* =0 iﬁdicates that the errors must be

fairly’iarge. The SOlid-curve'representé the resultsvdisplayed in

figs. 3..:Due to the restricted shapevparametrization (two uﬁdeform—'

able spheres joined by‘é éylindrical neck) the total obtainable energy -

loss isilimited to about 50 MeV in the dynamical trajectory calcu-

lations. Up to this value, however, the calculations agree fairly

well with the measured values. “The slope is nearly’the same and the

vertical shift is_withip the error of half a change uﬁit.quoted in

‘ref. 6)¥ |
The error bars for the ﬁeasured I" values appearing in the present

figure are those given in refs. 7’8). They are fairly large and the

‘exact trend of the data is not easy to discern. The preseﬁt calcu-

lations give a quick rise of T with E*, followed by a broad maximum.

The maximum occuré at around E¥ = 35 MeV in agreement with the data o

but it is not as pronounced. The behavior at large energy losses can

not be determined due to the mentioned limitations of the shape
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parameterization. The overall magnitude of the calculated curve is
seen to fall somewhat below.the exberimental data.

Figure 6, which is similar to fig. 5b, displays the calculated and
measured values of FFWHM for the case of 900 MeV 132Xe on l97Au
which has also been studied experimentally 3-2).v.The general dynam-
ical features are similaf to the illustrations in figs. 3 and 4
discussed above. In_this case though, there is no visible drift in Z
(at most 0;1 charge unit) which is to be expected since the system is
already from the outset close to equilibrium with respect to charge
asymmetry. The ovefall'collision.time is somewhat shorfer than in the
previous case. Forvéxaﬁple,for head-on collisions the interaction

time is 26x10_22 sec rather than 30 x 10_22 sec. The error bars

~on the width I indicate the variation in [ with the mass asymmetry of

the system rather than experimental errors in any particular
7,8, . . :
[-value ’7). The calculations are shown by the solid curve and the

correspondence with the data is quite satisfactory. 1In this case

oscillations in I'(E*) do in fact occur but they are minute and hardly

measurable.
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5.. Concluding remarks

In this paper we have embarked, rather brashly, on a collective,
quantal description of the charge equilibiation in damped nuclear
collisions, in spite of the fact that this approach touches on nearly
every fundamental question in macroscopic nuclear dynamics. The‘first
fundameﬁtal question is whetﬁer or not it is even appropriate fo treat
the éharge asymmetry as an elementary collective mode in the dinucleus.
Altefnatively,.one'couldlconsider the change in charge asymmetry as
reéulting exclusively from the stochastic exchénge of indiQidual
nuc leons and describe the equilibration as a diffusion process
governed by a master equation33). Botﬁ mechanisms are probably
present but a proper framework for their simultaneous treétment has
not yet been developed. A second fundamental question céncerns the

appropriateness of the hydrodynamic assumptions concerning the flow of

neutrons and protons back and forth through the neck. Other important
questions.arise in connection with our assumption that all the
éoupling between the charge asymmetry.mode and.the other degrees of
freedom of the system can be accoﬁnted for‘by means.of a frictional
Schrodinger equation with a time-dependent Hamiltonian; the tihe
“dependence of thévstiffness and mass parameters describes the coupling
to the other éollective modes while the coupling to the intrinsic

degrees of freedom is all hidden in the damping coefficient.
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Nevertheless, by proceeding step by step élong the program

outlined in the. introduction we have arrived at a number of results

- for comparison with experiment. 'We ‘are encouraged by the fact that

these predictions are consistent with the observations. This is .

-especially significant since all the coefficients entering in the
~various formulas are either fundamental nuclear constants or have been

'.otherwise fixed beforehand so that there are no adjustable parameters.

A treatment somewhat similar to ours can be found in the work of

7,8,30

Gregoire, Hofmann, Ng8 and others ) who undertaké to provide a

description of the charge equilibration process in terms of a quantal

~master equation. This reduces to an approach like ours since the

internal excitation is small, They parameterize the duration of the

collision and ignore the time dependence of the dynamical coeffi-

'cients. An unexpectedly large variation in the energy of the charge

asymmetry mode from case to case résults when the coefficients in the
theory are édjusted so as to repréduce observation.

The treatment of the charge asymmetry mode as a manifestation of
the Giant Dipole Resonance in a dumbbell shaped dinuclear complex is a
step toward opening up new region of study. Heretofore giant
resonances éf different multipolarity and isospin have usually béen
considered only for spherical (or slightly deformed) nuclei. (For a
notable exception see ref}34)). What we have begun té see here is
that our understanding of processes iike fission éﬁd heavy ion
reactiops may be bréadened by considering the behavior of‘giaﬁt-

resonances in the corresponding highly deformed shapes.
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Tablé 1.

Typical values of the frequency ), mass M, stiffness K, energy hge,

and friction coefficient Yy for the two dinuclear systems considered;

" the values correspond to the point of largest neck opening along the

head-on trajectories.

Q M - K hQ Y
(dsecﬁl) (MeV dsec? (MeV) (MeV) (dsec™1)
86kr + 92M0 0.88 5.21 4.03 5.79 0.37
2.48 4.90 0.38

132%e + 193p0 074 4.48

a) 1 dsec=10"22 sec.
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Figure Captions

" Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Fig. 6.

The geometrical quantities used to describe the dinuclear

complex during the collision.

'Typital results from the trajectory calculations for the time

evolution of the neck parameters and tﬁe intertial mass
associated with the charge asymmetry mode.

The time evolution of the mean change.(Z) for 'a number of
different initial angular momenta L.. The point éf neck
closure is.indicated'on each curve by the solid dot.

for a number

‘- . . . I!
The time evolutlop of the charge width FWEM

of'different initial angular momeénta L; similar to fig. 3.

7

_Measured and calculated values of the mean charge (Z) and

charge dispersion FFW (for the projectile-like fragment)

86X

M

as a function of energy loss in the reaction 430 MeV
197Au[

e

on

Measured and calculated values of the charge dispersion

3 i ’ * I3 . .
PFWHM as a function of energy loss E* in the reaction

900 MeV'132Xe on 1?7Au.
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(Z)>

O Experiment

--~ Experiment, including corrections
for neutron evaporation

- — Present work

l 1 L I |

86Kkr + 92Mo at Eq, =430 MeV
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